THEORETICAL MODELS OF AGING

SANTA FE INSTITUTE
JULY 27, 2009

DAVID STEINSALTZ
DEPT. OF STATISTICS
UNIVERSITY OF OXFORD
PETER MEDAWAR BUILDING
WHAT IS A MODEL OF AGING?

\[
\mu(x) = Be^{\theta x}
\]

Gompertz Law of Mortality

CANADA AGE-SPECIFIC MORTALITY 1995-1997

(FROM STATISTICS CANADA)
ANOTHER CLASSIC: STREHLER-MILDVAN MODEL

- DECLINE OF “VITALITY” LINEAR WITH AGE
- ORGANISM EXPERIENCES RANDOM, NORMALLY DISTRIBUTED “CHALLENGES”
- DEATH COMES WHEN A RANDOM CHALLENGE EXCEEDS VITALITY. IMPLIES GOMPERTZ MORTALITY
- UNSATISFYING, ESPECIALLY BECAUSE THE CRUCIAL AGING COMPONENT IS NOT AUTONOMOUS, BUT IS PUT IN AS A CLOCK-DRIVEN ASSUMPTION.
LEVELS OF MODELS

- MOLECULES/GENES
- INTERACTION
- MODULES
- ORGANELLES
- CELLS
- TISSUES
- ORGANS
- ORGANISMS
- POPULATIONS
- ECOSYSTEMS

MULTIPLE TIMESCALES TOO
MODELLING QUESTIONS

- CAN WE SEPARATE TIME-SCALES?
- CAN WE SEPARATE LEVELS OF ORGANIZATION?
- CAN WE TREAT DIFFERENT LEVELS WITH A UNIFIED APPROACH?
- WHAT ARE THE ESSENTIAL TRADEOFFS?
- WHAT LINK (IF ANY) IS THERE BETWEEN FUNDAMENTAL EVOLUTIONARY TRADEOFFS, THE TRADEOFFS WE SEE IN LABORATORY MUTATIONS, AND FACULTATIVE TRADEOFFS?
KINDS OF MODELS

☐ CONCEPTUAL

☐ SIMPLE SIMULATED

☐ SIMPLE THEORETICAL

☐ COMPLEX SIMULATED (SOME FEATURES MAY BE ANALYZED THEORETICALLY)

☐ DATA-DRIVEN
GOALS OF MODELS

- FUNCTIONAL
- DEFINITIONAL/PREDICTIVE
- TELEOLOGICAL - OPTIMIZATION
- TELEOLOGICAL - ENTROPIC
FUNDAMENTAL OBJECT OF AGING

- Damaged Proteins
- Some Other Junk Components
- Free Radicals/Antioxidants
- Somatic Mutations
- Damaged Mitochondria
- Cancer vs. Growth Balance
- Loss of Homeostasis
- Depletion of Stem Cells
- Mutation Accumulation
- Loss of Structural Integrity/Synchronization
- Energy Budget
- Something Else
SOME FACTS

- Senescence is common, but perhaps not universal.
- Senescence does occur in the wild.
- Many organisms have simple mutations available which substantially extend life. Do they slow aging?
- Many (but not all) organisms show extended lifespan and retarded aging under caloric restriction.
- The Gompertz pattern fits human mortality rates extremely well -- other organisms to some extent.
- Mortality rates are typically high early in development.
GENERAL PRINCIPLES

- Evolutionary: deleterious effects at later ages are less strongly selected against.
- Antagonistic pleiotropy and mutation accumulation.
- Therefore, some kind of early/late trade-off: energy, repair/integrity, growth/order.
- Aging represents a failure of homeostasis.
- Aging reflects the accumulation of some kind of damage.
- Repair is imperfect, costly, and shows diminishing returns.
MATHEMATICAL METHODS

- Graph Theory/Network Theory
- Dynamical Systems (Small vs. Large Dimension) - Mortality represented as System Catastrophe
- Markov Processes (Classical, Tree-Indexed, and Measure-Valued)
- Dynamic Programming
- Matrix Methods / Random Matrices
STATISTICAL METHODS

☐ SURVIVAL ANALYSIS
☐ MAXIMUM LIKELIHOOD
☐ BOOTSTRAPPING
☐ TIME-SERIES
WHAT IS THE QUESTION TO WHICH THE THEORY OF AGING WOULD BE AN ANSWER?

- It is indeed remarkable that after a seemingly miraculous feat of morphogenesis a complex metazoan should be unable to perform the much simpler task of merely maintaining what is already formed. -- G. Williams (1957)

- The decline in old-age mortality is perplexing. What biological charter permits us (or any other species) to live long postreproductive lives? -- J. Vaupel et al. (1998)
MARS MODEL
MITOCHONDRIA, ANTIOXIDANTS, REACTIVE SPECIES (KIRKWOOD/KOWALD 1996)

MEDIUM-DIMENSIONAL DYNAMICAL SYSTEM

MOLECULE TO CELL LEVEL

SALVAGED CLASSIC “ERROR PROPAGATION” MODEL: ERROR RATE INCREASES WITH DETERIORATION OF MITOCHONDRIA, CROSSES THRESHOLD
CARDIAC AGING MODEL
Example of intermediate level of modelling

Stefanovska (2009): Based on long, careful study of cardiovascular system as low-dimensional nonlinear dynamical system of coupled oscillators finds signal of aging in mutual modulation of respiratory and cardiac frequencies.

There are many such models -- mostly practical, medical driven. E.g., Weinberg et al (2009) model of aortic valve aging.
NETWORK MODELS
SIMPLIFIED DYNAMICAL SYSTEMS

- DYNAMICS ARE ALL IN THE NETWORK TOPOLOGY
- NO TIMING OR STRENGTH OF INTERACTIONS
- MAY BE A USEFUL SIMPLIFICATION
VERTICES ARE THE OBJECTS (GENES, PROTEINS, ETC.)

EDGES ARE INTERACTIONS (MAY BE DIRECTED)

DEGREE OF A VERTEX IS THE NUMBER OF VERTICES IT'S CONNECTED TO (CF. IN-DEGREE, OUT-DEGREE)

COMPONENT = CONNECTED GROUP OF VERTICES

RANDOM GRAPH EXAMPLES: ERDOS-RENYI (CONNECT VERTICES INDEPENDENTLY), PREFERENTIAL-ATTACHMENT

PREFERENTIAL-ATTACHMENT MAKES POWER-LAW NETWORK (ALSO CALLED SCALE-FREE NETWORK)
HUGE EXPERIMENTAL SHIFT:
HIGH-THROUGHPUT TECHNOLOGIES

☐ NEED TO MINE GENE-EXPRESSION, PROTEIN-INTERACTION, SEQUENCE DATA TO GENERATE THE “MASTER NETWORK”

☐ SOME DATA PUBLICLY AVAILABLE (CAVEAT: SEE BELOW)

☐ DATA ARE VERY NOISY: HARD TO GET REPPLICABLE RESULTS

☐ ALLOWS NEW QUESTIONS, NEW KINDS OF MODELS, BUT MAY BE EVEN HARDER TO ANSWER FUNDAMENTAL QUESTIONS BENEATH SO MUCH DETAIL

☐ “CHINESE NP NETWORKS”
PROMISLOW: PLEIOTROPY AND PROTEIN NETWORK

- Hypothesis: Antagonistic pleiotropy predicts “More highly connected proteins will be most likely to evolve an association with senescence.”

- Careful statistical testing: Genes associated with “aging-related” mutations do have higher degrees than genes associated with other mutation screens.

- Problems: What is an aging-related mutation? Are the mutations that show up in screens like the mutations that drive evolution?
Genes/Interventions Database

Through mid-September 2006, SAGE KE hosted and maintained this database of genes and interventions that have been studied with respect to their effects on life-span or age-related neurological diseases. On 18 September 2006, the Genes/Interventions Database was temporarily shut down. A new version of the database is currently being built and will be hosted at the University of Washington. We will provide information on the new instance of the database on this page when it becomes available.
BROKEN NETWORK MODELS

- Start with a network: real, random, or idealized
- Define a property of the structure to be “functioning”
- Break edges or remove vertices at some rate
- When does the network cease functioning?
- Chan et al. (2004): Aging scale-free network makes older nodes isolated
- Söti and Csermely (2007): Weak link / network destabilization model
CLASSIC VERSION: GAVRILOV SERIES-PARALLEL MODEL

N=5 “ORGANS” WITH K=4 REDUNDANT COMPONENTS.

NETWORK IS DISCONNECTED WHEN SOME ORGAN LOSES ALL COMPONENTS.

PLETCHEIMER AND NEUHAUSER (2000) EMBEDDED THIS IN AN EVOLUTIONARY CONTEXT, ALLOWING THE NETWORK STRUCTURE TO EVOLVE.
INTERMEDIATE VERSIONS

- BOOLEAN DYNAMICAL SYSTEMS
- AGOSTON ET AL. (2005): PARTIAL WEAKENING OF LINKS, STUDYING EFFECT ON “NETWORK EFFICIENCY” BY SIMULATION ON REAL EMPIRICAL REGULATORY NETWORKS
MUTATION ACCUMULATION MODELS
HOW DO WE EXTEND THIS TO MULTIPLE SITES?

KIMURA-MURAYAMA MODEL:

INDIVIDUAL WITH K MUTATIONS HAS FITNESS \((1-S)^K\). EACH NEWBORN GETS EXTRA POISSON(\(\nu\)) MUTATIONS.

EVOLUTION EQUATION: POPULATION DEFINED AT GENERATION T AS DISTRIBUTION ON NUMBER OF MUTATIONS. THIS IS ALWAYS POISSON WITH MEAN \(P_T\), SATISFYING

\[P_{T+1} = P_T (1-S) + \nu. \]

EQUILIBRIUM WHEN FREQUENCY OF MUTANT IS \(\nu/S\).
HAMILTON (1966): STUDY EVOLUTION OF AGEING BY CONSIDERING “MUTATIONS” THAT RAISE MORTALITY AT ONE AGE.

WHAT IS THE “COST” OF MORTALITY?

SIMPLE MODEL:
COST=LOST FUTURE REPRODUCTION.

DECREASE IN NET REPRODUCTION RATIO (NRR)

\[
NRR(g) = \int_0^\infty f_x(g)\ell_x(g)e^{-rx} \, dx.
\]

WHERE \(f_x(g) = \text{FERTILITY AT AGE } x \),
\(\ell_x(g) = \text{SURVIVORSHIP TO AGE } x \),
\(r = \text{POPULATION GROWTH RATE} \)
MUTATION-SELECTION EQUILIBRIUM

INTUITIVE SINGLE-LOCUS MODEL: MUTANT ALLELE ARISES AT RATE ν. SELECTIVE COST S. EQUILIBRIUM WHEN FREQUENCY OF MUTANT IS ν/s.

B. CHARLESWORTH (2001):

- CONSTANT REPRODUCTION RATE λ
- HIGH "BACKGROUND MORTALITY" μ
- MUTATION INCREASES MORTALITY BY m AT AGE x
- CONSTANT MUTATION RATE ν

$\text{COST} = \lambda m e^{-\mu x}$ OF TOTAL REPRODUCTION

$\text{EXPECT EQUILIBRIUM FREQUENCY} \quad \frac{\nu}{m \lambda} e^{\mu x}$
FUNDAMENTAL PROBLEM: MUTATIONS INTERACT

- COST OF MULTIPLE INCREASES TO MORTALITY LESS THAN THE SUM OF INDIVIDUAL COSTS
- THEREFORE PREDICT MORE MUTATIONS THAN LINEAR MODEL
- LINEAR MODEL IS QUALITATIVELY WRONG. MORTALITY RISES PAST EXPONENTIAL, REACHING INFINITY AT FINITE AGE (BEFORE END OF REPRODUCTION)
- GOOD EXAMPLE OF WHERE MORE MATHEMATICS IS NEEDED. SIMPLIFIED MODEL PRODUCES WRONG ANSWER ON ITS OWN TERMS
A DEFENSE OF MATHEMATICS

- Models may be too complex. Mathematical approaches may help to simplify them.
- Models may be too simple. Mathematical approaches may help to find what essential features are missing.
- Mathematics may explain the model behavior.
AGE-STRUCTURED POPULATIONS IN RANDOM ENVIRONMENTS
LESLIE MATRIX

\[L = \begin{pmatrix}
\mu_0 & \mu_1 & \mu_2 & \cdots & \mu_{\omega-1} & \mu_{\omega} \\
\lambda_0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_\omega & 0 \\
\end{pmatrix} \quad v = \begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_\omega \\
\end{pmatrix}
\]

\[v(T) = L^T v(0) \]

Convergence to stable age distribution, given by top eigenvector.

Long-term pop. growth rate = top eigenvalue.

Clue to the “cost” of changes to vital rates.
RANDOM ENVIRONMENT ➞ RANDOM LESLIE MATRIX

\[
L = \begin{pmatrix}
\mu_0 & \mu_1 & \mu_2 & \cdots & \mu_{\omega-1} & \mu_\omega \\
\lambda_0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_\omega & 0
\end{pmatrix}
\]

\[
v = \begin{pmatrix}
v_0 \\
v_1 \\
\vdots \\
v_\omega
\end{pmatrix}
\]

\[v(T) = L^T v(0)\]

AGE DISTRIBUTION DOESN'T CONVERGE

LONG-TERM POP. GROWTH RATE DETERMINISTIC = TOP "LYAPUNOV EXPONENT"

STUDIED FOR PLANT POPULATIONS BY TULJAPURKAR, HORVITZ, PASCARELLA

Wednesday, 29 July 2009
FIXED FRAILTY (INITIAL HETEROGENEITY) MODEL
Fixed Frailty: \[\mu_i(x) = B_i e^{\theta_i x} \]

Example: Two Subpopulations

\[B_1 = 10^{-4} \]
\[B_2 = 10^{-6} \]
\[\theta = 0.05 \]

Log Population Mortality Varies

Log Population Mortality

Log Population Mortality

0 Starts with 50% Robust (Type 2)

Introduced as Explanation for Mortality Plateaus by Vaupel et al., 1979
CHANGING FRAILTY MODEL

COULD ALSO INCORPORATE STOCHASTIC NETWORK MODELS

GENERICALLY PRODUCES MORTALITY PLATEAUS -- FUNDAMENTALLY STOCHASTIC PHENOMENON

YASHIN ET AL. (1994) POINTED OUT THAT FIXED- AND CHANGING-FRAILTY MODELS CAN YIELD THE SAME MORTALITY CURVES
DAMAGE ALLOCATION MODELS
CLASSICAL AGING INVOLVES ASYMMETRIC REPRODUCTION: PARENT RETAINS DAMAGE, PRODUCES PRISTINE OFFSPRING

PROTOZOANS MAY HAVE ANYTHING BETWEEN PRISTINE OFFSPRING AND SYMMETRIC DIVISION OF DAMAGE

"AGING" BECOMES A FEATURE OF LINEAGES AND POPULATIONS -- RELATED TO CLASSICAL IDEAS OF MUTATIONAL LOAD, AND BELL'S "EXOGENOUS REPAIR"

ENCOURAGED BY NEW EXPERIMENTS IN YEAST (LAI ET AL. 2002), CAULOBACTER (ACKERMANN ET AL. 2002), E. COLI (STEWART ET AL. 2005), TRACKING ASYMMETRY
GILLESPIE ET AL. (2004) YEAST ERC’S: SIMULATION, GOAL TO MATCH KNOWN MORTALITY RATES

ANSWER: YES. OPTIMAL POPULATION GROWTH COMES FROM INTERMEDIATE LEVEL OF ASYMMETRY

DATA-DRIVEN MODELS BY MARSAILLE, BANSAYE, OTHERS TO TEST FOR ASYMMETRY IN EXPERIMENTS
GROWTH-REPAIR-REPRODUCTION OPTIMIZATION MODELS
One sort of mathematization of disposable soma

Many versions: Mangel, Cichón, Chu and Lee

Often solved with dynamic programming
INTERGENERATIONAL TRANSFER MODEL

AGING DRIVEN BY RESOURCE TRANSFERS BETWEEN DIFFERENT AGES: ADULTS INVEST IN CHILDREN

“CORRECTS” HAMILTON TO SAY THAT MUTATIONS ARE PARTICULARLY SELECTED AGAINST THAT KILLS INDIVIDUAL WHEN NET INVESTMENT IS MAXIMUM

FASCINATING IDEAS, LEE MODEL SOMEWHAT INCOHERENT